Buzz Syntax Cheatsheet
# This is a comment
File inclusion
include "otherfile.bzz"
# NOTE: A specific file can be included only once.
# Any 'include' statement for a file is ignored after the first inclusion
# occurred.
# Relative paths are automatically transformed into absolute paths before
# including a file.
Variables
# assignment (by default variables are global)
x = 2.55 # number
x = "ciao" # string
# local variables
function f() {
var x = 42
# do stuff with x
}
# printing on the ARGoS logger
log("INFO: x = " , x)
Conditionals
# simple if/then
if (x > 3) {
log("x is too big")
}
# if/else
if (x > 3)
log("x is too big")
else if (x < 3)
log("x is too small")
else
log("maybe I just don't like x")
# checking for equality
if x == 3
log("x is equal to 3")
# checking for inequality
if (x != 4)
log("x is different from 4")
# combining conditions with OR
if (x < 3) or (x > 3)
log("x is not 3")
# combining conditions with AND
if ((x > 3) and (y > 3))
log("x and y are too big")
# negating a condition
if (not (x < 3))
log("x is <= 3")
String
x = "This is buzz"
y = "language"
# Getting length of string
log("Length of string x: ", string.length(x))
# Return a substring, string.sub(i,j)
# The substring starts at i.
# If the third argument j is not given, the substring will end at the end of the string.
# If the third argument is given, the substring ends at and includes j.
z = string.sub(x, 3)
# Concatenate a string
z = string.concat(x," ",y)
# Converting type to string
z = string.tostring(5512)
# Converting type to int
z = string.toint("2")
# Converting type to float
z = string.tofloat("3.6")
Loops
# 'while' loop to print 1 2 3 4 5
x = 0
while (x < 5) {
x = x + 1
log(x)
}
Tables
# creating an empty table
t = {}
# creating a table with some initial value
t = { .x=3 }
# using the contents of a table: two equivalent ways
log("t.x = ", t.x) # dot syntax
log("t['x'] = ", t["x"]) # string syntax
# printing the contents of a table: a custom function
function table_print(t) {
foreach(t, function(key, value) {
log(key, " -> ", value)
})
}
# tables are always passed by reference!
t1 = { .x=3 }
t2 = t1 # now t2 points to the contents of t1 -> no deep copy
t2.x = 5
log(t1.x) # prints 5, not 3!
# copying tables the right way
function table_copy(t) {
var t2 = {}
foreach(t, function(key, value) {
t2[key] = value
})
return t2
}
t1 = { .x=3 }
t2 = table.copy(t1)
t2.x = 5
log(t1.x) # prints 3
log(t2.x) # prints 5
# prints the number of elements in a
log(size(a))
Functions
# defining a function
function my_fun(p) {
log("Called my_fun(", p, ")")
}
# returning a value
function my_add(a, b) {
return a + b
}
# creating a lambda
lambda = function(a, b) {
return a + b
}
lambda(1,2)
Math
# All the math functions are part of the 'math' table
# Functions consists of: abs, log, log2, log10, exp, sqrt, min, max, pi
# Trigonomerty functions: sin, cos, tan, asin, acos, atan2
# Example of usage
a = math.abs(-3)
b = math.min(332,42)
# Setting a 2D vector from length and angle
function vec2_new_polar(length, angle) {
var vec2 = {
x = length * math.cos(angle)
y = length * math.sin(angle)
}
return vec2
}
v = vec2_new_polar(2, math.pi/3)
# Summing two 2D vectors (v1 = v1 + v2)
function vec2_sum(v1, v2) {
v1.x = v1.x + v2.x
v1.y = v1.y + v2.y
}
v1 = { .x=1, .y=2 }
v2 = { .x=3, .y=1 }
vec2_sum(v1, v2)
# Getting the angle of a 2D vector
function vec2_angle(v) {
return math.atan2(v.y, v.x)
}
# Random
# Set seed
rng.setseed(11)
# No arguments: [-int_max,int_max]
# One argument A:
# A is BUZZTYPE_INT: [0, A]
# A is BUZZTYPE_FLOAT: [0.0, A]
# Two arguments (A,B):
# Both A and B are BUZZTYPE_INT: [A, B] as BUZZTYPE_INT
# A is BUZZTYPE_INT and B is BUZZTYPE_FLOAT: [A.0, B] as BUZZTYPE_FLOAT
# A is BUZZTYPE_FLOAT and B is BUZZTYPE_INT: [A, B.0] as BUZZTYPE_FLOAT
# Both A and B are BUZZTYPE_FLOAT: [A, B] as BUZZTYPE_FLOAT
x = rng.uniform()
# No arguments: 1 stddev, 0 mean
# 1 argument A: A stddev, 0 mean
# 2 arguments (A,B): A stddev, B mean
x = rng.gaussian()
I/O
# Open file for reading("r") or writing("w")
f = io.fopen("text.txt", "w")
# Writing to a file
io.fwrite(f, "Buzz", "Swarm")
# Reading and iterating a file
f = io.fopen("text.txt", "r")
io.fforeach(f, function(line) {
print(f.name, ": ", line)
})
}
io.fclose(f)
Swarm management
# creation of a swarm with identifier 1
s = swarm.create(1)
# Join the swarm if the robot identifier (id) is even
# - 'id' is an internal symbol that refers to the
# numeric id of the robot executing the script
# - % is the modulo operator
s.select(id % 2 == 0)
# Join the swarm unconditionally
s.join()
# Leave the swarm if the robot id is greater than 5
s.unselect(id > 5)
# Leave the swarm unconditionally
s.leave()
# Check whether a robot belongs to s
if(s.in()) { ... }
# Assigning a task to a swarm
s.exec(function() { ... })
# a, b are swarms defined earlier in the script
# Create new swarm with robots belonging to both a and b
# The first argument is a unique swarm identifier
i = swarm.intersection(100, a, b)
# Create new swarm with robots belonging to a or b
u = swarm.union(101, a, b)
# Create new swarm with robots belonging to a and not to b
d = swarm.difference(102, a, b)
# Create a new swarm n as the negation of swarm s
n = s.others(103)
Neighbor management
# Iteration (rid is the neighbor's id)
neighbors.foreach(
function(rid, data) {
log("robot ", rid, ": ",
"distance = ", data.distance, ", ",
"azimuth = ", data.azimuth, ", ",
"elevation = ", data.elevation) })
# Transformation
cart = neighbors.map(
function(rid, data) {
var c = {}
c.x = data.distance * math.cos(data.elevation) *
math.cos(data.azimuth)
c.y = data.distance * math.cos(data.elevation) *
math.sin(data.azimuth)
c.z = data.distance * math.sin(data.elevation)
return c
})
# Reduction (accum is a table)
# with values x, y, and z, initialized to 0
result = cart.reduce(function(rid, data, accum) {
accum.x = accum.x + data.x
accum.y = accum.y + data.y
accum.z = accum.z + data.z
return accum
}, {.x=0, .y=0, .z=0})
# Filtering
onemeter = neighbors.filter(function(rid, data) {
# We assume the distance is expressed in centimeters
return data.distance < 100 })
# Listening to a (key,value) pair
neighbors.listen("key",
function(vid, value, rid) {
log("Got (", vid, ",", value, ") from robot #", rid)
}
)
# Stopping listening to a key
neighbors.ignore("key")
# Broadcasting a (key,value) pair
neighbors.broadcast("key", value)
Virtual stigmergy
# Create a new virtual stigmergy
# A unique id (1 here) must be passed
v = stigmergy.create(1)
# Write a (key,value) entry into the structure
v.put("a", 6)
# Read a value from the structure
x = v.get("a")
# Get the number of keys in the structure
log("The vstig has ", v.size(), " elements")
# Return local value if
# Remote value is smaller than local, OR
# Values are equal, robot of remote record is smaller than local one
v.onconflict(function(k,l,r) {
if(r.data < l.data or (r.data == l.data and r.robot < l.robot)) {
return l
}
# Otherwise return remote value
else return r
})